초록문의 abstract@kcsnet.or.kr

결제문의 member@kcsnet.or.kr

현재 가능한 작업은 아래와 같습니다.
  • 02월 28일 19시 이후 : 초록수정 불가능, 일정확인 및 검색만 가능

제111회 대한화학회 학술발표회, 총회 및 기기전시회 안내 Catalytic Access to Gold Carbenoids and Their Applications in Organic Synthesis

2013년 3월 4일 14시 20분 14초
ORGN2-1 이곳을 클릭하시면 발표코드에 대한 설명을 보실 수 있습니다.
목 14시 : 30분
유기화학 - Current Trends in Organic Chemistry: Functional Organic Materials
저자 및
한양대학교 화학과, Korea
Recent focus in our laboratory deals with development of N-O bond redox chemistry catalyzed by gold complexes.1-3 Of particular interest in this area is the equivalence of alkynes to alpha-oxo carbenoids. Catalytically generated Au-carbenoids enables a number of interesting tandem reactions, such as [3+2]-dipolar cycloadditions of azomethine ylides,1 tandem Mannich reaction,2 and N-H insertion/annulation.3 These examples show that the N-O bond substrates derived from cheap hydroxylamines are appealing oxidants for generation and utilization of carbene intermediates. Second aspect in this presentation deals with new reactivity of acceptor-substituted alkynes.4-6 Despite long-standing interests in the reactions of 1,n-enynes particularly in the area of gold catalysis, there are few intermolecular processes. To enhance and exploit the intermolecular reactivity of alkynes, we adopted to use acceptor-polarized alkynes and successfully developed a variety of inter-molecular reactivity. Alkenes function as nucleophilic components in such reactions, most likely involving cyclopropyl gold carbenoids as intermediates. This led to [4+2] annulations of delta-lactones, and unprecedented enyne cross metathesis product. Diversification of alkyne component reveals new reactions, such as kinetic resolution of E/Z olefin mixtures with a high selectivity. Change of olefinic component into allylic ether led to a new intermolecular [3,3]-sigmatropic rearrangement, an equivalent of classical Claisen rearrangement

1. (a) Yeom, H. -S.; Lee, J. -E.; Shin, S. Angew. Chem. Int. Ed. 2008, 47, 7040. (b) Yeom, H. -S.; Lee, Y. Lee, J. -E.; Shin, S. Org. Biomol. Chem. 2009, 7, 4744. (c) Jeong, J.; Yeom, H. -S.; Kwon, O.; Shin, S. Chem. Asian J. 2011, 6, 1977.
2. Yeom, H. -S.; Lee, Y.; Jeong, J.; So, E.; Hwang, S.; Lee, J.; Lee, S. S.; Shin, S. Angew. Chem. Int. Ed. 2010, 49, 1611.
3. Yeom, H. -S.; So, Eunsu; Shin, S. Chem. Eur. J. 2011, 17, 1764.
4. Yeom, H. -S.; Koo, J.; Park, H. -S.; Wang, Y.; Li, Y.; Z. -X. Yu; S. Shin, J. Am. Chem. Soc. 2012, 134, 208.
5. Park, S. R.; Kim, C.; Kim, D. -g.; Thrimurtulu, N.; Yeom, H. -S.; Jun, J.; Shin, S.; Rhee, Y. H. Org. Lett. 2013, doi: 10.1021/ol4001087.
6. (a) Koo, J.; Park, H. ?S.; Shin, S. Tetrahedron Lett. 2013, 54, 834. (b) Yeom, H. -S.; Shin, S. Org. Biomol. Chem. 2013, 11, 1089.