초록문의 abstract@kcsnet.or.kr

결제문의 member@kcsnet.or.kr

현재 가능한 작업은 아래와 같습니다.
  • 02월 28일 17시 이후 : 초록수정 불가능, 일정확인 및 검색만 가능

제123회 대한화학회 학술발표회, 총회 및 기기전시회 안내 Degradation Mechanisms in Lithium-Ion Batteries with Layered Transition Metal Oxide Based Cathode Active Materials

2019년 3월 29일 09시 51분 45초
ELEC.O-10 이곳을 클릭하시면 발표코드에 대한 설명을 보실 수 있습니다.
목 10시 : 30분
Electrochemistry - Oral Presentation of Young Scholars in Electrochemistry
저자 및
A.T.S. Freiberg, H.A. Gasteiger*, R. Jung, M. Metzger, S. Solchenbach, B. Strehle, T. Teufl, J. Wandt
Technical Electrochemistry, Dept. of Chemistry and Catalysis Research Center, Germany
※ 국외소속으로 등록된 저자의 승인여부는 최소 3일이내 발표자 email로 알려드립니다.
승인 8건
Promising cathode active materials (CAMs) to increase the energy density of lithium ion batteries are nickel-rich NCM (LiNixCoyMnxO2 with x+y+z=1) and overlithiated so-called HE NCM (Li1+xM1-xO2; with M=Ni, Co, Mn) 1, 2. However, at high states-of-charge (SOC), molecular oxygen is released from the surface of these materials, not only leading to a growth of the cathode impedance, but also to enhanced electrolyte oxidation 3,4. Based on these observations, we suggested that the overall oxidation of the electrolyte can be distinguished into a chemical oxidation mechanism triggered by the release of active oxygen at high SOC and into a purely electrochemical oxidation mechanism initiating at high potentials 5.

Using on-line electrochemical mass spectrometry (OEMS) 3-5 and operando emission spectroscopy, we will provide evidence that the chemical electrolyte oxidation mechanism is triggered by the release of singlet oxygen from NCM and HE NCM surfaces at high SOC. It will be discussed how the reaction of singlet oxygen with the electrolyte solvents can result in the formation of protic species 6, leading to transition metal dissolution from the CAMs 7. As dissolved transition metals will deposit on the lithium-ion battery anode, the effect of transition metals on the stability of the graphite SEI will also be discussed 8.

1. D. Andre, S.-J. Kim, P. Lamp, S.F. Lux, F. Maglia, O. Paschos, B. Stiaszny, J. Mater. Chem. A 3 (2015), 6709.
2. K.G. Gallagher, S. Goebel, T. Greszler, M. Mathias, W. Oelerich, D. Eroglu, V. Srinivasan, Energy Environ. Sci. 7 (2014) 1555.
3. B. Strehle, K. Kleiner, R. Jung, F. Chesneau, M. Mendez, H.A. Gasteiger, M. Piana, J. Electrochem. Soc. 164 (2017) A400.
4. R. Jung, M. Metzger, F. Maglia, C. Stinner, H.A. Gasteiger, J. Electrochem. Soc. 164 (2017) A1361.
5. R. Jung, M. Metzger, F. Maglia, C. Stinner, H.A. Gasteiger, J. Phys. Chem. Lett. 8 (2017) 4820.
6. A.T.S. Freiberg, M.K. Roos, J. Wandt, R. de Vivie-Riedle, H.A. Gasteiger, J. Phys. Chem. A 122 (2018) 8828.
7. J. Wandt, A.T.S. Freiberg, R. Thomas, Y. Gorlin, A. Siebel, R. Jung, H.A. Gasteiger, M. Tromp, J. Mater. Chem. A 4 (2016) 18300.
8. S. Solchenbach, G. Hong, A.T.S. Freiberg, R. Jung, H.A. Gasteiger, J. Electrochem. Soc. 165 (2018) A3304.