초록문의 abstract@kcsnet.or.kr

결제문의 member@kcsnet.or.kr

현재 가능한 작업은 아래와 같습니다.
  • 05월 20일 18시 이후 : 초록수정 불가능, 일정확인 및 검색만 가능

제125회 대한화학회 학술발표회 및 총회 Modification of Ordered Mesoporous Carbon with Physical Block and Catalytic Effects for Li-S Batteries

2020년 2월 6일 14시 58분 37초
MAT.P-784 이곳을 클릭하시면 발표코드에 대한 설명을 보실 수 있습니다.
온라인 PDF 제출
Material Chemistry
저자 및
Ye Lim Kwon, Ju-Hyun Ryu, Su Jin Kim1, Ji Man Kim*
Department of Chemistry, Sungkyunkwan University, Korea
1Sungkyunkwan University, Korea
These days, many portable electronic devices are used widely. It makes secondary batteries important for future innovation. Li-ion battery which is the most commonly used has problems with high price and possibility of explosion and also it reaches the limitations of energy density. So Li-S battery is becoming a one of the promising alternatives. It has high theoretical energy density and low cost. Also it is eco-friendly and safe. However, there is the primary problem to be commercialized. That one is called shuttle effect, which means dissolution of polysulfides into the electrolyte in the repetitive charging and discharging. It makes capacity decrease and internal resistance increase. To minimize the shuttle effect, we modified ordered mesoporous carbon(OMC) materials. Carbon materials which have good conductivity are used with sulfur since the sulfur is non-conductive. Especially the OMC has high thermal and chemical stability, high surface area and high pore volume. First, we synthesized the OMC materials with micropore by introducing silica nanoparticles. We expected that polysulfides with long chain could be blocked due to the small pore size. In the second place, we loaded metal nanoparticles on the OMC. Nanoparticles of platinum could catalyze the reaction of polysulfides so dissolved polysulfides could be trapped. The materials were characterized by X-ray diffraction(XRD), N2-sorption, scanning electron microscope(SEM), and energy dispersive X-ray(EDS).