초록문의 abstract@kcsnet.or.kr

결제문의 member@kcsnet.or.kr

현재 가능한 작업은 아래와 같습니다.
  • 09월 20일 16시 이후 : 초록수정 불가능, 일정확인 및 검색만 가능

제126회 대한화학회 학술발표회 및 총회 In Situ Generated Silver Nanodot Förster Resonance Energy Transfer Pair Reveals Nanocage Sizes

2020년 9월 16일 16시 36분 00초
PHYS.P-236 이곳을 클릭하시면 발표코드에 대한 설명을 보실 수 있습니다.
10월 21일(수) 17:30~18:00
Physical Chemistry
저자 및
Yanlu Zhao, Sungmoon Choi, Junhua Yu*
Department of Chemical Education, Seoul National University, Korea
Characterizing nanocages in macromolecules is one of the keys to understanding various biological activities and further utilizing nanocages for novel materials synthesis. However, fast and straightforward detection of the nanocage size remains challenging. Here, we present a new approach to detect the diameter of a nanocage by Förster resonance energy transfer (FRET) of luminescent silver nanodot pairs with reverse micelles as a model. Silver nanodot FRET pairs can be generated in situ from a single silver nanodot species with critical energy transfer distances, R0, of 4.8−6.5 nm. We have applied this approach to clarify the size variation of the water nanocage in nonionic surfactant Triton X-100- based reverse micelles. FRET efficiency decreases as more water is added, indicating that the size of the reverse micelles continuously expands with water content. The silver element in the nanocage also enhances the visualization of the nanocage under cryo-TEM imaging. The diameter of the water nanocage measured with the above approach is consistent with that obtained by cryo-TEM, demonstrating that the FRET measurement of silver nanodots can be a fast and accurate tool to detect nanocage dimensions. The above demonstration allows us to apply our strategy to other protein-based nanocages.