초록문의 abstract@kcsnet.or.kr

결제문의 member@kcsnet.or.kr

현재 가능한 작업은 아래와 같습니다.
  • 09월 20일 16시 이후 : 초록수정 불가능, 일정확인 및 검색만 가능

제126회 대한화학회 학술발표회 및 총회 Structure guided design of novel acetylene containing 3-aminoindazoles incorporated with diarylamides as potent Breakpoint cluster region-Abelson (Bcr-Abl) kinase inhibitors endowed with anti-leukemia activity

2020년 9월 16일 18시 13분 30초
MEDI.P-435 이곳을 클릭하시면 발표코드에 대한 설명을 보실 수 있습니다.
10월 21일(수) 17:30~18:00
Medicinal Chemistry
저자 및
Ashraf K. El-Damasy
Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
※ 국외소속으로 등록된 저자의 승인여부는 최소 3일이내 발표자 email로 알려드립니다.
승인 1건

Breakpoint cluster region-Abelson (Bcr-Abl) kinase is a key driver in the pathophysiology of chronic myelogenous leukemia (CML). Broadening the chemical diversity of Bcr-Abl kinase inhibitors with novel chemical entities possessing favorable target potency and cellular efficacy is a current medical demand for CML treatment. In this respect, a new series of ethynyl bearing 3-aminoindazole based Bcr-Abl inhibitors has been designed, synthesized, and biologically evaluated. The target compounds were designed based on introducing the key structural features of ponatinib, alkyne spacer and diarylamide, into the previously reported indazole II to improve its Bcr-Abl inhibitory activity and overcome its poor cellular potency. All target compounds elicited potent activity against Bcr-AblWT with sub-micromolar IC50 values ranging 4.6–667 nM. In addition, certain derivatives exhibited promising potency over the clinically imatinib-resistant Bcr-AblT315I. Among the target molecules, compounds 9c, 9h and 10c stood as the most potent derivatives with IC50 values of 15.4 nM, 4.6 nM, and 25.8 nM, respectively, against Bcr-AblWT. Interestingly, 9h showed 2 folds and 3.6 times superior potency to the lead indazole II and 10c, respectively, against Bcr-AblT315I. Molecular docking of 9h pointed out its possibility to be a type II kinase inhibitor. Furthermore, all compounds, except 9b, showed highly potent antiproliferative activity against the Bcr-Abl positive leukemia K562 cell (MTT assay) surpassing the modest activity of lead indazole II. Moreover, the most potent members 9h and 10c exerted potent antileukemic activity against NCI leukemia panel, particularly K562 cell (SRB assay) with GI50 less than 10 nM, being superior to the FDA approved drug imatinib. Further biochemical hERG and cellular toxicity, phosphorylation assay, and NanoBRET target engagement of 9h underscored its merits as a promising candidate for CML therapy.