abs
본문내용바로가기
KCS
학술발표회
화학이야기
발행지
학회소식
학회소개
KR
EN
학술발표회
상세안내
초록보기
초록통계
초록집 모음
초록등록
기기전시회 안내
화학이야기
주기율표
화학술어
화합물 명명법
네이버 화학백과
연구실험실 안전정보
연구윤리 정보
화학올림피아드
화학포스터 시화대회
미래화학자 연구발표회
발행지
저널
화학세계
화학교육
학회소식
학회소식/공지사항
학술행사/정보마당
언론에 비친 KCS
구인/구직
회원동정
후원사 혜택 안내
지면 광고 안내
공익법인 기부금 내역서
학회소개
정관/세칙
소개 및 활동/사업
현임원
역대임원
연혁
역대 학회상 수상자
대한화학회 창립 75주년
분과회/지부
학회자료실
이사회 회의록
단체회원
전자앨범
사무국/오시는 길
로그인
회원가입
회원안내
로그인
회원가입
회원안내
English
메뉴열기/닫기
학술발표회
초록보기
홈
학술발표회
학술발표회
화학이야기
발행지
학회소식
학회소개
초록보기
상세안내
초록보기
초록통계
초록집 모음
초록등록
기기전시회 안내
Inquiry on Abstract
abstract@kcsnet.or.kr
Inquiry on Payment
member@kcsnet.or.kr
현재 가능한 작업은 아래와 같습니다.
03월 02일 17시 이후 : 초록수정 불가능, 일정확인 및 검색만 가능
129th General Meeting of Korean Chemical Society & Exposition
MRM-based prediction of disease subtypes: A case of pancreatic ductal adenocarcinoma
Submission Date :
2 / 28 / 2022 , 14 : 42 : 20
Abstract Number :
129022827188
Presenting Type:
Poster Presentation
Presenting Area :
Analytical Chemistry
Authors :
Jiwon Hong
, Seunghoon Back
, Dowoon Nam
, Jingi Bae
, Hokeun Kim
, Su-Jin Kim
, Chaewon Kang
, Kwon Hee Bok
, Hye-Kyeong Kwon
, Sang-Won Lee
*
Department of Chemistry, Korea University, Korea
Assigned Code :
ANAL.P-332
Assigend Code Guideline
Presenting Time :
April 14 (THU) 11:00~13:00
Identification of disease subtypes can facilitate tailoring therapeutic strategies. At a glance, progression of a disease may seem similiar across all patients, yet the underlying mechanism at molecular level can differ greatly. Applying appropriate therapies to target the right progression pathway would enable patients to have optimal therapeutic benefits with minimized side effects. In order to optimize the therapeutic option, it is crucial to be able to identify disease subtypes promptly with high certainty. Here, a MRM-based subtype prediction method is introduced with its application to pancreatic ductal adenocarcinoma (PDAC), one of the diseases with lowest average 5-year survival rate. More than 90% of the patients do not show response to surgery or chemotherapy, which necessitates a way to tailor appropriate therapeutic options. An extensive proteogenomic characterization identified 6 subtypes of PDAC and subtype specific signature peptides. Based on pathway enrichment and network analyses, as well as the adequacy for MRM, a set of subtype specific peptides were chosen for MRM-based subtype identification. These peptides were stable isotope labeled (SIL), purified, quantified respectively then mixed together to create a PDAC subtype identification SIL peptide mixture for spiking in MRM validation experiments. From the MRM-quantified endogenous peptide amounts, key subtype signature peptides were extracted and taken to build a PLS-DA model with an average 88.9% accuracy and AUC of 0.905 in all 6 subtypes. We plan to examine the correlation between survival rates and the deduced subtypes from the prediction model to assess the value of the PDAC subtype identification technology (PDAC-SIT) for clinical trials of drug candidates as a predictive enrichment strategy.