121st General Meeting of the KCS

Type Poster Presentation
Area Inorganic Chemistry
Room No. Event Hall
Time 4월 19일 (목요일) 11:00~12:30
Code INOR.P-83
Subject Bioinspired Liquid Phase Deposition on Close-Packed Silica Bead Arrays
Authors Gyuri Kim, Yi-Seul Park, JIN SEOK LEE*
Department of Chemistry, Sookmyung Women's University, Korea
Abstract Organisms can biosynthesize hierarchically patterned three-dimensional (3D) biominerals, called as biomineralization, such as calcium carbonate (mollusks shells), calcium phosphate (bone), and silica (diatom cell walls). The structural hierarchy in biominerals attributes strengths and stiffness, leading to protect themselves from natural environment. Especially, the process for production of silica into the living organism is known as biosilcification, which are often discovered in the diatom. Diatoms are complex and elaborated nano- and microstructured materials, whose architectures have numerous nanoscale pores with high porosity and high mechanical stability. Their extraordinary properties may have a potential for applications, such as sensors, molecular filters, and energy harvesting. In this work, we explored the silicification on the arranged nanoscale-scaffold surface, such as the hexagonally close-packed silica bead arrays with porous structures, to mimic 3D hierarchical structures of diatoms by local liquid phase deposition. The energy and local concentration of silicic acid on the nanostructured surface are different; therefore, it is important to investigate the liquid phase deposition on the nanostructure with diverse conditions to mimic and understand the mechanism of bioinspired morphogenesis. The different amount of water in LPD solution and reaction temperatures were used to investigate the effect of diverse environment because the biosilicification of diatoms occurs in the various surrounding environment such as concentration, temperature, and pressures. In addition, the silicification on the nanostructured surface deposited at the pinholes among the beads due to local high concentration, and this was monitored by Electrochemical Quartz Crystal Microbalance(EQCM). Furthermore, the pore arrangement and directions with 3D hierarchical structures were realized by patterned silica bead arrays and binary monolayers of different sized beads with varying the LPD conditions.
E-mail star4210@sookmyung.ac.kr