121st General Meeting of the KCS

Type Poster Presentation
Area Material Chemistry
Room No. Event Hall
Time 4월 20일 (금요일) 11:00~12:30
Code MAT.P-500
Subject Fabrication of cathode materials based on V2O5/reduced graphene oxide composites for Li-ion battery
Authors Won Gi Hong, Sang Moon Lee, Jin Bae Lee, Hae Jin Kim*
Korea Basic Science Institute, Korea
Abstract Vanadium pentoxide has been attractive due to its relatively high theoretical capacity of 294 mAh/g and layered crystal structure as a host for reversible Li+ intercalation/de-intercalation1. Herein, we show that the reduced graphene oxide/V2O5 nanobelts (rGOVONB) are a promising candidate for cathode material of high performance Li-ion batteries (LIBs). The rGOVONB were synthesized by microwave-assisted hydrothermal method followed by thermal annealing under nitrogen atmosphere at variable temperatures (573, 673, and 773K). One-dimensional V2O5 nanobelts were formed in the presence of graphene oxide (GO), which also enhanced the conductivity of rGOVONB. GO played a significant role as a mild oxidizing agent for the formation of nanobelts. The existence of rGO into the layered V2O5 crystal structure was confirmed by electron energy loss spectroscopy (EELS) analysis. The point EELS spectrum clearly showed the strong carbon signal. The electrochemical properties of rGOVONBs as cathode materials were investigated for LIBs. The rGOVONB annealed at 773 K exhibited a high capacity of 225mAh/g at a current density of 40mA/g and showed better electrochemical performance with a capacity of 137mAh/g after 70cycles at the current density of 800 mA/g in comparison to the other rGOVONBs and the pristine materials. This study provides a simple and efficient route for 1D cathode materials through a microwave-assisted hydrothermal method.
E-mail hongwg79@kbsi.re.kr