121st General Meeting of the KCS

Type Poster Presentation
Area Life Chemistry
Room No. Event Hall
Time 4월 20일 (금요일) 11:00~12:30
Code BIO.P-293
Subject Structure−catalytic activity correlation in peptide-programmable nanoparticle superstructures
Authors Eun Sung Kang, Yong Ho Kim1,*
SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Korea
1Department of Chemistry, SKKU Advanced Institute o, Sungkyunkwan University, Korea
Abstract Supramolecular protein assembly is an ubiquitous process that physical and chemical principles of Mother Nature have achieved great complexity and stability to build up architectures of a life in molecular level. There have been so many trials of understanding how to construct supramolecular protein assembly and also a lot of successes have been built up. The stacked principles have recently been applied for designing the hybrid nanoparticle-protein superstructures that can show unique physical properties and potential application in the areas of plasmonics, molecular sensing, and nanoscale electronics. Here we show an unique nanostructure of self-assembled peptides that would allow for the wrapping of single walled carbon nanotubes (SWNTs) with specific helicities. We also demonstrate that the selection rule whereby precisely controlling position of functionality within such superstructures constrains a variety of arrangement of bimetallic AuPt nanoclusters for the purpose of enhancing catalytic activity of oxygen reduction reaction (ORR). The elected positions of functionality from the selection rule precisely alter their arrangement and density of catalytic nanoparticles and result in a significant change on ORR activity and durability. The remarkable electrochemical property of nanoparticle-protein-SWNT superstructures corresponding to controlling of interparticle distance, particle size and alloy composition of single-phase nanoparticles suggests a route to the construction of new functional protein nanomaterials tailored to unique energy applications.
E-mail dmstjdrkd1@gmail.com