122nd General Meeting of the KCS

Type Symposium
Area [KCS-GDCh Joint Symposium] Recent International Trends in Spectroscopic and Computational Chemistry
Room No. Room 324A
Time FRI 15:50-:
Code PHYS3-4
Subject Toward Understanding of Complex Solid-Liquid Interfaces
Authors Hyungjun Kim
Department of Chemistry, Korea Advanced Institute of Science and Technology, Korea
Abstract Chemistry at the interface of dissimilar materials and phases of matters is often very exotic compared to the bulk phase chemistry. In particular, solid-liquid interfaces have their own importance due to their ubiquity in a variety of applications, such as heterogeneous catalysts and electrochemical systems for sustainable energy conversion and storage. However, because of their high degree of complexity and difficulty in experimental characterizations, the molecular level of details at the solid-liquid interfaces are barely understood to date, which impedes the further development and optimization of the chemistry at the interface. In such case, theory can be the best option; however, there is no proper simulation method that can describe both phases at the full atomic level in a computationally efficient manner. We thus develop a first-principles based multiscale simulation method to understand, predict, and design the chemistry at the complex materials interface. In this talk, I will discuss our recently developed multiscale simulation method, namely a density functional theory in classical explicit solvents (DFT-CES), and demonstrate how theory and computational simulations can aid understanding the exotic chemistry at the solid-liquid interface, which can suggest a theoretical guideline for developing better materials interfaces, heterogeneous catalysts, and electrochemical systems.
E-mail linus16@kaist.ac.kr