125th General Meeting of the KCS

Online Meeting 바로가기

Type Oral Presentation
Area Oral Presentation for Young Material Chemists
Room No. Room 303 (Live Streaming)
Time TUE 10:00-10:15
Code MAT.O-5
Subject Time-Controlled Nanoscale Delivery System
Authors SeoYeah Oh, Jiwon Kim*
School of Integrated Technology, Yonsei University, Korea
Abstract Delivering cargoes at desired time points and positions in nanoscale is necessary in order to precisely control the time-dependent reactions. For example, each drug needs to be delivered at desired time point in order to increase the efficacy of multi-drugs. The delivery time and position also need to be finely controlled if cargoes should be combined before they degrade for activation. However, it is difficult to develop a spatio-temporally controlled delivery system (especially for multi-cargoes, delivery time difference with a short period time (< a few minutes)) due to random walk motion of cargoes, difficulty of applying two different driving forces on the same type of nanoscale delivery system, and an interference between cargoes. Herein, we designed two (or more) types of nanomotor which can travel at different speeds upon a single magnetic stimulus. Nanomotors were composed of nickel head – silver flexible filament – gold tail encapsulated with N-isopropylacrylamide (NIPAm) based hydrogel. The difference in speed was quantitatively controlled by adjusting the length of each compartment whereas the cargo releasing time was regulated by optimizing the thickness of encapsulating hydrogel. Our nanomotor based nanoscale delivery system demonstrated sequential cargo delivery with time-difference of a few minutes. This delivery system can possibly increase the gene editing efficiency (e.g. CRISPR/Cas9 system) and efficacy of multi-drugs by allowing drugs or genetic materials to be activated at different time points. Furthermore, our time-controlled delivery system in nanoscale can also be applied in molecular communication via applying sequential (bio)material transmission as a signal.
E-mail 5_calligraphy@yonsei.ac.kr