Copper-Oxygen Chemistry
Kenneth D. Karlin, Shinobu Itoh, Steven Rokita | ISBN: 978-0-470-52835-8
Hardcover | 488 pages | September 2011

3 차원의 무기화합물 구조는 일반적으로 은이온이 형성하는 클러스의 톨레디아이온이 들어간 고정적인 모דל로 묘사된다. 이 모델을 설명하지 않는 경우가 종종 있어 다음의 두 가지 가정 하에 보완적인 모델이 제시되었다. (1) 전기성 정도가 높은 원자에 전차를 주고 은이온 클러스가 형성되며 이 때, 은이온은 pseudo-atom 또는 pseudo-molecule 이 형성된다. (2) 금속화합물의 구조는 금속원소 또는 해당 합금의 구조에 의해서 결정된다. 이 두 번째 가정은 많은 수의 금속 파편화학의 구조가 살펴본 기술 및 합금 사이의 구조와 매우 유사하다는 이론적 관찰에 기초한 것이다. 두 번째 가정에 기초하여 브레 semi-metallic 합금에 대해서 고전적인 Zintl-Klemm 개념을 부분적으로 이론을 확장하여 설명할 수 있음을 제시하고 있다. 본문에서 많은 수의 예를 들어 extended Zintl-Klemm 합금법의 정리들을 잘 보여주며 고전적인 모델에 대한 충실한 대인이 될 수 있음을 증명하고 있다. 예를 들어 FeCuTe의 결정구조를 FeS와 동일한 구조를 가진은 FeS의 유사체로 단순화하여 설명한다. 이렇게 구조의 전자 이동 결과에서 pseudoatomic을 취할 수 있는 P가 형성되어 이론적 Fe-pseudo-G 간격을 형성하고 이의 동안에 Li+가 내포된다. 같은 방식으로 설명하는 것이다. 더욱 복잡한 경우를 예를 들어서 고전적 모델에서 전차를 하이드라 그러나의 구조를 취하고 3차원 무기화합물의 구조를 쉽게 설명하고 이해할 수 있는 결과 제시하고 있다. 이론의 문제점은 실제로 존재해야 하며 균질하는 형용존재인 pseudo-atom에 기반화하지 않는 점이다. 때문에 논의의 여지가 있는 반면 새로운 연구주제를 제시하는 이론화합물에 흥미를 줄 수 있다.

Inorganic 3D structures [The Extended Zintl-Klemm Concept]