초록문의 abstract@kcsnet.or.kr

결제문의 member@kcsnet.or.kr

현재 가능한 작업은 아래와 같습니다.
  • 02월 19일 10시 이후 : 초록수정 불가능, 일정확인 및 검색만 가능

제121회 대한화학회 학술발표회, 총회 및 기기전시회 안내 Investigation of Innovative Synthetic Approach for Successful Implementation of Fragment-Based Design

2018년 3월 16일 14시 24분 32초
ORGN1-1 이곳을 클릭하시면 발표코드에 대한 설명을 보실 수 있습니다.
목 15시 : 40분
Organic Chemistry - Current Trends in Organic Chemistry I: New Reactions and Methodology
저자 및
Sungwoo Hong
Department of Chemistry, Korea Advanced Institute of Science and Technology, Korea
Solutions to problems that are posed by organic, medicinal, biological and material science, demand synthetic innovation with efficient synthetic routes. Our current research is focused on studying breakthrough knowledge in catalytic synthetic methods and molecular design that have high impact on broader scientific fields. The state-of-the-art of approach can be seen using systematic experimental and theoretical methods from three steps: (1) development of innovative synthetic methods that allow rapid access to molecular complexity and structural diversity of privileged fragments, (2) fragment-based drug design (FBDD) and de novo design methods connecting privileged building blocks, (3) development of potent and selective inhibitors based on understanding the mechanisms at the molecular level. The selective C–H bond functionalization has become the favored reaction methods in practical synthetic processes. The new catalytic synthetic methods allow us to perform the unprecedented disconnection of target molecules, affording innovative and imaginative synthetic strategies of so-called “privileged scaffolds”. The power and efficiency of direct C–H functionalization could be further enhanced by combining such catalytic transformations into a one-pot process, which is highly desirable by providing a powerful platform for constructing complicated key motifs from simple starting materials. Subsequent medicinal chemistry studies involving a modular approach and privileged fragments assembly, will provide bases for the development of pharmaceutical agents via structure-based design. The new catalytic synthetic methods will function as competent tools directly utilized in cross coupling reactions capable of connecting privileged building blocks, providing opportunities for the successful implementation of fragment-based drug design (FBDD) and eventually streamline drug discovery research.