초록문의 abstract@kcsnet.or.kr

결제문의 member@kcsnet.or.kr

현재 가능한 작업은 아래와 같습니다.
  • 03월 01일 23시 이후 : 초록수정 불가능, 일정확인 및 검색만 가능

제129회 대한화학회 학술발표회, 총회 및 기기전시회 In Situ Monitoring of Single Droplet Collision

2022년 1월 18일 18시 00분 51초
ELEC2-2 이곳을 클릭하시면 발표코드에 대한 설명을 보실 수 있습니다.
금 09시 : 25분
Electrochemistry - Recent Developments and Future Issues in Physical and Analytical Electrochemistry
저자 및
Jun Hui Park
Department of Chemistry, Chungbuk Natioanl University, Korea
We describe a simple method for real-time observation of collision and recollision behavior of a single aqueous attoliter droplet in an organic solvent through single-entity electrochemistry. The dynamics and morphology of the droplet after the collision event at the Au ultramicroelectrode (Au-UME) were monitored by consecutive cyclic voltammetry and amperometric current−time measurements. By sequentially applying oxidative potential and reductive potential at the Au-UME in the presence of attoliter droplets containing reversible redox species (e.g., ferrocyanide), we successfully detected the oxidative collision spike and its reductive recollision spike successively owing to the reversible redox reactions inside the droplet. Because the redox species was dissolved in a reduced form, the reductive collision spikes observed are the direct evidence that the water droplets colliding at the electrode surface are detached after the oxidation reaction. The collided droplet properties, such as size change and contact area, are also investigated and discussed. These instructions are an example of what a properly prepared.